官网首页 | 中文 | English
 
 
 
 
当前位置: 首页>>教师观点>>正文
 
 

【王辉】《Normal mixture quasi maximum likelihood estimation for non-stationary TGARCH(1,1) models》

[发布日期]:2015-03-18  [浏览次数]:

《Statistics and Probability Letters》 2014年第91卷刊发我司王辉教授与潘家柱博士的合作论文《Normal mixture quasi maximum likelihood estimation for non-stationary TGARCH(1,1) models》

现代金融理论认为,风险评估和定价这两个金融市场活动中的核心都离不开对金融资产收益的波动率的度量,对波动率的有效辨识直接影响到资产定价、资产配置以及风险管理。因此,自时变波动率模型自回归条件异方差模型(ARCH/GARCH)问世以来,它们已在金融经济中得到了广泛应用。大量的实证研究表明,金融数据的新息具有尖峰厚尾性,且具有杠杆效应。另一方面,非平稳性也是经济和金融时间序列的一个重要特征,如果对非平稳性的序列拟合一个平稳的模型则会导致错误的模型形式和非常差的波动率预测,因此我们需要考察估计对TGARCH模型平稳性与否的稳健性。

与伪最大似然估计(QMLE)相比,基于正态混合分布的伪最大似然估计(NM-QMLE)对于厚尾数据更加有效。本文提出了利用不带限制的NM-QMLE来估计非平稳TGARCH模型,并且证明了该估计在一定正则性条件下除位置参数以外的其他参数具有相合性。由于本文对位置参数不作任何限制,且平稳情形下该估计也是相合的,从而在进行TGARCH模型的估计时,不论模型平稳与否,都可以直接进行估计。

自回归条件异方差模型(ARCH/GARCH)刻画了金融收益率波动率的时变性、聚集性和厚尾性,自问世以来备受瞩目,且在金融经济中得到了广泛应用。然而,标准的GARCH模型是对称的,然而实证表明异方差效应会随着误差的正或负而有所不同,即存在杠杆效应或非对称性,为了能更好地刻画实际金融数据的非对称性特征,文献中提出了TGARCH模型。对于该类模型的估计,文献中最常用的方法是基于正态分布的伪最大似然估计(G-QMLE),并且证明了在一定条件下该估计是相合的和渐近正态的。大量的实证研究表明,金融数据具有尖峰厚尾性,新息的真实分布与正态分布相差甚远,从而G-QMLE的有效性比较差,正态混合分布却因为其可以更好地刻画分布的厚尾性和有偏性而备受青睐。另一方面,大量实证研究表明金融收益率波动率可能是非平稳的甚至是爆炸的,因此我们很有必要研究非平稳波动率模型的估计和建模问题。

综合考虑上述因素,本文对非平稳的TGARCH(1,1)模型提出了基于正态混合分布的伪最大似然估计(NM-QMLE),并且从理论上证明了在一定条件下该估计具有相合性和渐近正态性。由于估计的有效性很难从理论上证明,我们基于蒙特卡洛方法对其进行了仿真研究,结果表明当新息的尾部越厚或者偏度越大时,NM-QMLE比G-QMLE更加有效。本文的最后对意大利2011年1月至2011年底的意大利5年期CDS数据的波动率进行建模分析,实证结果表明新息的分布更接近正态混合分布,基于传统的G-QMLE方法将导致错误的模型选择和较差的模型拟合,基于本文方法的建模更加有效。



上一条:【王辉】《Restricted normal mixture QMLE for non-stationary TGARCH(1, 1) models》 下一条:【姜富伟】中国债券市场:风险、回报及机会

关闭